next up previous
Next: Free Energies Up: Complex Structures: Empirical Treatment Previous: Effect of Pressure on

Phonon Dispersion

The empirical potential has been used to calculate the phonon spectra for diamond, BC8 and ST12 phases at various pressures up to 10GPa. Atomistic relaxations, as described in Chapter 1, have been performed under constant pressure allowing the atoms and box size to relax into their equilibrium state. These atomic positions and cell parameters are used in conjunction with the potential to calculate the vibrational frequencies allowed in the crystals by the methods described in Section 5.2. The phonon dispersion curves are calculated along several lines of high symmetry, but to calculate thermodynamic properties, only the phonon frequency density of states are required rather the dispersion curves. For this reason it is necessary to calculate the allowed phonon frequencies at points throughout the Brillouin zone rather than along lines of high symmetry. A good description of the vibrational density of state is required as illustrated in Chapter 3 where the vibrational spectrum of only the tex2html_wrap_inline5288 point modes of the ST12 structure and tex2html_wrap_inline5288 and X modes of the diamond and BC8 structures could be calculated due to the large compute time of ab initio calculations. It was found that the BC8 structure had lower vibrational free energy than ST12 at all temperatures and therefore would always be more stable that the ST12 structure. A similar result is obtained with the empirical potential on calculation of the tex2html_wrap_inline5288 point modes only. In order to obtain a good density of states the Brillouin zone is sampled in a regular grid of tex2html_wrap_inline5306 k-points for the diamond structure and tex2html_wrap_inline5310 in the BC8 and ST12 structures. It will be shown in Section 5.6 that this full description of the vibrational spectra means that the ST12 structure always has a lower vibrational free energy than the BC8 structure and hence the possibility of ST12 becoming the more stable structure is found.

The phonon dispersion curves along several lines of high symmetry for the diamond, BC8 and ST12 structures at zero pressure are shown in Figures 5.5-5.10. The phonon density of states used in the free energy calculations are also given in these figures.

  figure1771
Figure 5.5: Phonon dispersion curves for the diamond structure along several lines through the first Brillouin zone of the the primitive unit cell. 

  figure1777
Figure 5.6: Phonon density of states for the diamond structure calculated on a regular grid of tex2html_wrap_inline5306 k-points. 

  figure1783
Figure 5.7: Phonon dispersion curves for the BC8 structure along several lines through the first Brillouin zone of the the primitive unit cell. 

  figure1789
Figure 5.8: Phonon density of states for the BC8 structure calculated on a regular grid of tex2html_wrap_inline5310 k-points. 

  figure1795
Figure 5.9: Phonon dispersion curves for the ST12 structure along several lines through the first Brillouin zone of the the primitive unit cell. 

  figure1801
Figure 5.10: Phonon density of states for the ST12 structure calculated on a regular grid of tex2html_wrap_inline5310 k-points. 

There is no experimental data on phonon frequencies for the ST12 structure and very little on BC8 due to the difficulty in making reasonable samples. The phonon density of states for the diamond structure is in excellent agreement to that of experiment[84]. The peaks from 3 to 5 THz correspond to the low frequency acoustic modes associated with bond bending and can easily be fitted to experiment by adjustment of the C parameter in the potential. The high frequency TO( tex2html_wrap_inline5288 ) modes can also be fitted by setting the second derivative of the A and B functions in the potential to give a frequency of 15.5THz. Fitting only these two values produces a dispersion curve for modes that are not fitted which is also in reasonable agreement with experiment[84]. This gives confidence that the results for the BC8 and ST12 structures will also be reliable since the potential is made to describe the tetrahedral nature of such structures. A recent light scattering experiment[85] obtained frequencies of Raman active modes at ambient pressure in the range of 10.5THz to 13THz although the authors do not identify which modes they are. The BC8 structure phonon dispersion curve (Figure 5.7) and density of states (Figure 5.8) show a high density of modes at 12.8THz at the tex2html_wrap_inline5288 point (and could therefore be Raman active) and also along the tex2html_wrap_inline6814 and tex2html_wrap_inline6816 lines at approximately 12.5THz to 13.0THz respectively and at the H point at 10.3THz (although these modes cannot be seen by Raman experiments). This good agreement of the tex2html_wrap_inline5288 -modes to a Raman experiment also indicates that the potential is transferable to these complex phases to which the parameters are not fitted.

The general trend in the density of states as the structure becomes more complex (diamond tex2html_wrap_inline6048 BC8 tex2html_wrap_inline6048 ST12) with increasing numbers of different bond lengths and bond angles shows a reduction in the height of the peaks of the high frequency (TO) modes in favour of the lower frequency bond bending modes. This behaviour is also observed as the pressure is increased. It is also interesting to note that there is a range of forbidden frequencies in the higher range of the spectrum for the ST12 structure. As pressure increases, the gap increases from 0.8THz at ambient pressure to almost 1.6THz at 10GPa.

In all cases the effect of pressure on the structures is to increase the frequencies of all the modes although this increase varies - in general the high frequency (mostly bond stretching) modes shows a large change in frequency with pressure while the acoustic modes remain relatively unchanged. The frequencies of the zone centre phonons have been picked out for comparison with Raman spectroscopy. The variation in frequency with pressure of zone centre phonons in BC8 is remarkably similar to that measured experimentally[86, 85] in silicon BC8. The low frequency modes are almost unchanged with pressure, consistent with the TA phonons in most tetrahedral semiconductors. These may even be anomalous in that their frequency is slightly reduced with pressure. This implies that the effective force constants for these modes are unchanged or even slightly weakened by pressure. The lack of anomalous modes in the simulation can be associated to the lack of explicit bondlength dependence in the term which describes the low frequency modes. The effect of such a change in pressure on the phonon modes can be characterised by the Grüneisen parameter defined by the ratio of the logarithmic change in frequency to volume, thus:

eqnarray1813

Therefore a softening of a mode with pressure results in a negative Grüneisen parameter. The Grüneisen parameters have been calculated for the zone centre modes and are shown in Table 5.2.

  table1818
Table 5.2: Grüneisen parameters for the non-degenerate zone centre modes for the BC8 and ST12 structures modelled by an empirical potential. 

The variation in frequency of the zone centre modes for the BC8 structure with increasing pressure is shown in Figure 5.11.

  figure1839
Figure 5.11: Change in zone-centre phonon frequencies with increase in pressure for the ST12 (left hand plot) and BC8 (right hand plot) structures. 

Comparison to experimental results on BC8 silicon[85] show remarkably good agreement. The equivalent plot for the ST12 structure is also shown although there exists no experimental data for comparison.

The predicted Grüneisen parameter for the TA(X) phonon is small, 0.28, an order of magnitude smaller than the bond stretching modes, but non-negative. This mode is dominated by the bond bending term[77, 80, 82], and the Grüneisen parameter is always positive for models with this type of bond bending term, because the third derivative of tex2html_wrap_inline6826 is tex2html_wrap_inline6828 which is negative for all angles occurring in the BC8, ST12 and diamond structures. Since the entropy calculations performed below requires a sum of (logarithms of) frequencies and not the product, the absolute error in this quantity, regardless of sign, is the important feature. This is small.


next up previous
Next: Free Energies Up: Complex Structures: Empirical Treatment Previous: Effect of Pressure on

Stewart Clark
Thu Oct 31 19:32:00 GMT 1996